Fractions Dash

Objective

Consolidate knowledge of equivalent fractions

Fquipment

- Stackable PE cones/markers - two sets of around 20 cones, each set of a different colour (e.g. red cones/blue cones)

Preparation

- Prepare the sets of cones by using a whiteboard marker to clearly write a fraction etc on each of the 20 cones.
- These can be taken from the sets below or other pairs could be used. (Each set of coloured cones has the same pairs written on them).
- Give each pupil one (or more) cones and ask them to stand in space over the playing area. Ask them to place their cones on the ground so that cones are spread evenly over the playing area.
- Split the class into two teams - each team is given one of the colours and a base at one end of the playing area.

Instructions

- The teacher calls 'Go!' and each team runs into the playing area.
- Pupils have to collect cones of their team's colour into matching pairs.
- When they have found a matching pair (e.g. $1 / 2$ and $5 / 10,0.75$ and $3 / 4,21 / 4$ and $9 / 4$ etc) they run and place them at their team's base.
- The team which is first to correctly pair up all their cones is the winner.

Sets of equivalent fractions, fractions/decimals, improper fractions/mixed numbers, mixed set (inc decimals, $\%$, improper fractions)

Equivalent fractions		Fractions/decimals		
$1 / 2,3 / 6,1 / 3,2 / 3,1 / 4$,	$5 / 10,4 / 8,2 / 6,4 / 6,2 / 8,6 / 8$,	$1 / 2,1 / 10,3 / 10,1 / 4,3 / 4 / 4,1 / 8$,	$0.5,0.1,0.3,0.250 .75$,	
$3 / 4,5 / 8,2 / 5,1 / 6,4 / 7$	$10 / 16,4 / 10,2 / 12,4 / 14$	$1 / 100,3 / 100,1 / 5,1 / 3$	$0.125,0.01,0.03,0.2,0.333$	
Improper fractions/mixed numbers	Mixed set			
$3 / 2,5 / 3,6 / 4,12 / 10$,	$11 / 2,12 / 3,11 / 2,11 / 5$,	$50 \%, 75 \%, 25 \% 0.4,0.7$,	$1 / 2,3 / 4,1 / 4,4 / 10,7 / 10$,	
$5 / 3,8 / 6,5 / 4,8 / 5,9 / 4$,	$12 / 3,11 / 3,11 / 4,13 / 5,21 / 4$,	$0.2,11 / 4,12 / 5,23 / 4,13 / 6$	$1 / 5,5 / 4,7 / 5,11 / 4,9 / 6$	
$7 / 3$	$21 / 3$			

1

